静电纺丝载药纤维及其在经皮递药系统中的研究进展

叶佩雯, WEI Su-ying, 魏凤环

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (24) : 2034-2042.

PDF(1646 KB)
PDF(1646 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (24) : 2034-2042. DOI: 10.11669/cpj.2019.24.006
综述

静电纺丝载药纤维及其在经皮递药系统中的研究进展

  • 叶佩雯1, WEI Su-ying2, 魏凤环1*
作者信息 +

Progress of Electrospinning Drug-loaded Fibers and Application in Transdermal Drug Delivery System

  • YE Pei-wen1, WEI Su-ying2, WEI Feng-huan1*
Author information +
文章历史 +

摘要

静电纺丝技术为载药系统的构建开辟了新方法。载药电纺丝纳米纤维具有与细胞外基质形态结构相近、通气性好和吸湿性强等独特的纤维形貌,尤其适于经皮给药系统的应用。笔者通过归纳分析电纺载药纳米纤维的含义与特点、基质材料选择、制备方法、载药形式与释药特征,及其在经皮递药系统的应用,为电纺纳米纤维经皮给药系统相关研究提供借鉴。

Abstract

Electrospinning technology opens up a new method for the construction of drug delivery system. The unique fiber structures of drug-loaded electrospinning nanofibers with the characteristics of similar to the extracellular matrix,good air permeability and hygroscopicity are very suitable for transdermal drug delivery systems.In this paper, the definition, characteristics, matrix selection, preparation methods, drug-loaded forms and drug-released profiles of drug-loaded electrospinning nanofibers are summarized and analyzed. Meanwhile, the application of drug-loaded electrospinning nanofbiers in the transdermal drug delivery systems is analyzed. This review is to provide support for the further studies on electrospun nanofiber transdermal drug delivery system.

关键词

静电纺丝 / 载药纳米纤维 / 经皮给药系统

Key words

electrospinning technology / drug-loaded nanofiber / transdermal drug delivery system

引用本文

导出引用
叶佩雯, WEI Su-ying, 魏凤环. 静电纺丝载药纤维及其在经皮递药系统中的研究进展[J]. 中国药学杂志, 2019, 54(24): 2034-2042 https://doi.org/10.11669/cpj.2019.24.006
YE Pei-wen, WEI Su-ying, WEI Feng-huan. Progress of Electrospinning Drug-loaded Fibers and Application in Transdermal Drug Delivery System[J]. Chinese Pharmaceutical Journal, 2019, 54(24): 2034-2042 https://doi.org/10.11669/cpj.2019.24.006
中图分类号: R944   

参考文献

[1] JIANG H L, WANG L Q, ZHUK J. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents[J]. J Controlled Release, 2014, 193(11):296-303.
[2] GREINER A, WENDORFF J H. Electrospinning: a fascinating method for the preparation of ultrathin fibers[J]. Angew Chem Inter Ed, 2007, 46(30): 5670-5703.
[3] SILL T J, RECUMH A V. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials, 2008, 29(13):1989-2006.
[4] AYTAC Z, UYAR T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin[J]. Int J Pharm, 2017, 518(1-2):177-184.
[5] SPERLING L E, REIS K P, PRANKEP, et al. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery[J]. Drug Discov Today, 2016, 21(8):1243-1256.
[6] LU Y, HUANG J N, YU G Q, et al. Coaxial electrospun fibers:applications in drug deliveryand tissue engineering[J]. WIREs Nanomed Nanobiotechnol, 2016, 8(5):654-677.
[7] SEDGHI R, SHAABANI A. Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms[J]. Polymer, 2016, 101(9):151-157.
[8] SUNX Z, WILLIAMS G R, HOUX X, et al. Electrospun curcumin-loaded fibers with potential biomedical applications[J]. Carbohydr Polym, 2013, 94 (1):147-153.
[9] ZHANG Q, LI Y C, LIN Z Y, et al. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications[J]. Drug Discov Today, 2017, 22(9):1351-1366.
[10] PRAUSNITZ M R, MITRAGOTRI S, LANGER R. Current status and future potential of transdermal drug delivery[J]. Nat Rev Drug Discov, 2004, 3(2):115-124.
[11] THOMAS B J, FINNIN B C. The transdermal revolution[J]. Drug Discov Today, 2004, 9(16):697-703.
[12] PRAUSNITZ M R, LANGER R. Transdermal drug delivery[J]. Nat Biotechnol, 2008, 26(11):1261-1268.
[13] WIEDERSBERG S, GUYR H.Transdermal drug delivery: 30+ years of war and still fighting[J]. J Controlled Release, 2014, 190(9):150-156.
[14] KAMYAR K, HASSAN M, HADI S, et al.Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances[J]. Carbohydr Polym, 2018, 198(10):131-141.
[15] CHENS X, LIR Q, LI X R, et al. Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine[J]. Adv Drug Deliv Rev, 2018, 132(7):188-213.
[16] TORRES-GINER S, MARTINEZ-ABA D A, GIMENO-ALCANI Z J V, et al. Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers[J]. Adv Eng Mater, 2012, 14(4):112-122.
[17] HOUACINE C, YOUSAF S S, KHAN I, et al. Potential of natural niomaterials in nano-scale drug delivery[J]. Curr Pharm Des, 2018, 24(43):5188-5206.
[18] LIU G D, GU Z B, HONG Y, et al. Electrospun starch nanofibers: recent advances, challenges, andstrategies for potential pharmaceutical applications[J]. J Controlled Release, 2017, 252:95-107.
[19] ACEVED O F, HERMOSILL A J, SANHUEZ A C, et al. Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells[J]. Eur J Pharm Sci, 2018, 119(7):49-61.
[20] AMIRR A, BAHMAN E H, ASHRAFALSADAT H Z, et al. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats[J]. Mater Sci Eng C, 2018, 92(11):161-171.
[21] NEJATI-KOSHKI K, PILEHVAR-SOLTANAHMADI Y, ALIZADE H E, et al. Development of emuoil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine[J]. Drug Develop Ind Pharm, 2017, 43(12):1978-1988.
[22] AHIRE J J, ROBERTSON D D, VAN REENEN A J, et al. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes[J]. Biomed Pharmacother, 2017, 86(2):143-148.
[23] SHAN Y H, PENG L H, LIU X, et al. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound[J]. Int J Pharm, 2015, 479(2):291-301.
[24] BASARA O, CASTRO S, TORRES-GINER S, et al. Novel poly(ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of ketoprofen anti-inflammatory drug[J]. Mater Sci Eng C, 2017, 81(12):459-468.
[25] LEE H, XU G, KHARAGHANI D, et al. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles[J]. Int J Pharm, 2017, 531(1):101-107.
[26] ZUPANI , SINHA-RAY S, SINHA-RAY S, et al. Controlled release of ciprofloxacin from core-shell nanofibers with monolithic or blended core[J]. Mol Pharm, 2016, 13(4):1393-1404.
[27] NAM S, LEE J J, LEE S Y, et al. Angelica gigas nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and soluplus for oral cancer therapy[J]. Int J Pharm, 2017, 526(1-2):225-234.
[28] JING W, MAIKE W. Influence of polymer composition and drug loading procedure on dual drug release from PLGA:PEG electrospun fibers[J]. Eur J Pharm Sci, 2018, 124(8):71-79.
[29] LIX M, WANG C, YANG S, et al. Electrospun PCL /mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications[J]. Int J Nanomed, 2018, 13(9):5287-5299.
[30] MENDESA A C, GORZELANN Y C, HALTER N, et al. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery[J]. Int J Pharm, 2016, 510(1):48-56.
[31] LIAKOSI L, HOLBANA M, CARZINO R, et al. Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity[J]. Nanomaterials, 2017, 7(4):84.
[32] HAI T, WAN X, YU D G, et al. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile[J]. Mater Des, 2019, 162(11):70-79.
[33] KAMBLE R N, GAIKWA D S, MASKE A, et al. Fabrication of electrospun nanofibres of BCS II drug for enhanced dissolution and permeation across skin[J]. J Adv Res, 2016, 7(3):483-489.
[34] SONG J, FAN X C, SHEN Q. Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery[J]. Int J Pharm, 2016, 501(1-2):245-252.
[35] ZHANG Z Y, LIU S, QI Y X, et al. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery[J]. J Controlled Release, 2016, 235(8):125-133.
[36] YANG Y Y, LI W B, YU D G, et al. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning[J]. Carbohydr Polym, 2019, 203(1):228-237.
[37] HAN D, SHERMAN S, FILOCAMO S, et al. Long-term antimicrobial effect of nisin released from electrospun triaxial fiber membranes[J]. Acta Biomater, 2017, 53(4):242-249.
[38] BUZGO M, FILOVA E, STAFFAA M, et al. Needleless emulsion electrospinning for the regulated delivery of susceptible proteins[J]. J Tissue Eng Regen Med, 2018, 12(3):583-597.
[39] JIANG S, LÜ L P, LANDFESTER K, et al. Nanocontainers in and onto nanofibers[J]. Acc Chem Res, 2016, 49(5):816-823.
[40] CASASOLA R, THOMAS N L, TRYBALA A, et al. Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter[J]. Polymer, 2014, 55(18):4728-4737.
[41] NAJAFI-TAHER R, DERAKHSHAN M A, FARIDI-MAJIDI R, et al. Preparation of an ascorbic acid/PVA-chitosan electrospun mat: a core/shell transdermal delivery system[J]. RSC Adv, 2015, 5(62):50462-50469.
[42] SUN Z C, ZUSSMAN E, YARINA L, et al. Compound core-shell polymer nanofibers by co-electrospinning[J]. Adv Mater, 2003, 15(22):1929-1932.
[43] MEECHAISUE C, DUBIN R, SUPAPHOL P, et al. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material[J]. J Biomater Sci Polym Ed, 2006, 17(9):1039-1056.
[44] RASEKH M, KARAVASILI C, SOONG Y L, et al. Electrospun PVP-indomethacin constituents for transdermal dressings and drug delivery devices[J]. Int J Pharm, 2014, 473(1-2):95-104.
[45] DING F Y, DENG H B, DU Y M, et al. Emerging chitin and chitosan nanofibrous materials for biomedical applications[J]. Nanoscale, 2014, 6(16):9477-9493.
[46] SCOTT D E, BAYLY A R, ABELL C, et al. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge[J]. Nat Rev Drug Discov, 2016, 15(8):533-550.
[47] WU X M, BRANFORD-WHITE C J, ZHU L M, et al. Ester prodrug-loaded electrospun cellulose acetate fiber mats as transdermal drug delivery systems[J]. J Mater Sci: Mater Med, 2010, 21(8):2403-2411.
[48] SANTORO M, SHAHB S R, WALKER J L, et al. Poly(lactic acid) nanofibrous scaffolds for tissue engineering[J]. Adv Drug Deliv Rev, 2016, 107(12):206-212.
[49] RAVIKUMAR R, GANESH M, UBAIDULLA U, et al. Preparation, characterization, and in vitro diffusion study of nonwoven electrospun nanofiber of curcumin-loaded cellulose acetate phthalate polymer[J]. Saudi Pharm J, 2017, 25(6):921-926.
[50] SUWANTONG O, OPANASOPIT P, RUKTANONCHAI U, et al. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance[J]. Polymer, 2007, 48(26):7546-7557.
[51] KONTOGIANNOPOULOS K N, ASSIMOPOULOU A N, TSIVINTZELI S I, et al.Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications[J]. Int J Pharm, 2011, 409(1):216-228.
[52] PHIRIYAWIRUT M, PHAECHAMUD T. Cellulose acetate electrospun fiber mats for controlled release of silymarin[J]. J Nanosci Nanotechnol, 2012, 12(1):793-799.
[53] BLAIR J M A, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance[J]. Nat Rev Microbiol, 2015, 13(1):42-51.
[54] RAUT J S, KARUPPAYIL S M. A status review on the medicinal properties of essential oils[J]. Indust Crops Prod, 2014, 62(62):250-264.
[55] LIAKOS I, RIZZELLO L, HAJIALI H, et al. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents[J]. J Mater Chem B, 2015, 3(8):1583-1589.
[56] OOIL S M, LI Y, KAM S L, et al.Antimicro-bial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia blume[J]. Am J Chin Med, 2006, 34(3):511-522.
[57] RIEGER K A, SCHIFFMAN J D.Electrospinning an essential oil: cinnamaldehyde enhances theantimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers[J]. Carbohydr Polym, 2014, 113(11):561-568.
[58] CHANTARODSAKUN T, VONGSETSKUL T, JANGPATARAPONGSA K, et al. [6]-Gingerol-loaded cellulose acetate electrospun fibers as a topical carrier for controlled release[J]. Polym Bull, 2014, 71(12):3163-3176.
[59] AYTAC Z, DOGAN S Y, TEKINAY T, et al. Release and antibacterial activity of allylisothiocyanate/-cyclodextrin complex encapsulatedin electrospun nanofibers[J]. Colloids Surfaces B: Biointerfaces, 2014, 120(8):125-131.
[60] AYTAC Z, YILDIZ Z I, KAYACI-SENIRMAK F, et al. Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties[J]. RSC Adv, 2016, 6(52):46089-46099.
[61] AYTAC Z, YILDIZ Z I, KAYACI-SENIRMAK F, et al. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity[J]. Food Chem, 2017, 231(9):192-201.
[62] MADHAIYAN K, SRIDHAR R, SUNDARRAJAN S, et al. Vitamin B12 loaded polycaprolactone nanofibers: a novel transdermal route for the water soluble energy supplement delivery[J]. Int J Pharm, 2013, 444(1-2):70-76.

基金

国家自然科学基金海外合作项目资助(81728021);广东省自然科学基金项目资助(2016A030313573)
PDF(1646 KB)

Accesses

Citation

Detail

段落导航
相关文章

/